
COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 33−44 (2019)

 33

The problem of effective deployment architecture in SOA

A. WOŹNIAK, T. NOWICKI

adrian.wozniak@wat.edu.pl, tadeusz.nowicki@wat.edu.pl

Military University of Technology, Faculty of Cybernetics
 Institute of Computer and Information Systems

Kaliskiego 2, 01-489 Warsaw, Poland

Service Oriented Architecture is popular in many organizations. In particular, it has already deeply rooted in
large corporations that need to automate entire business processes and implement them in many systems. It has
a unique feature that allows unambiguously indicate service that is to realise business process step.
That indication is possible to show directly in BPMN diagram. Thus, it is possible to trace which server has
used resources to implement the service and how much of those resources were needed. Therefore, it is
possible to build an optimization task that, with limited and unreliable resources, will determine such allocation
of components to servers and such an algorithm for assigning tasks to them, so that the processes will work as
well as possible. The article presents a model of such an optimization task. This model consists of four layers.
The Organization Layer describes the system environment – the types and frequency of initiating business
process instances. The Integration Layer describes the business processes and indicates the services that should
be performed at every step. The Component Layer describes component characteristics and what services they
provide. In Server Layer both: server characteristics and runtime environments necessary for the component to
run are described. Finally, the optimization task and evaluation criteria are formulated.

Keywords: SOA deployment, mathematical model, system architecture optimization.

GICID: 01.3001.0013.6604

1. Introduction

The functioning of an organization, to some
extent, can be reflected by the implementation of
its business processes. Business processes [1],
[2], [3] are understood as an ordered set of
actions that are repetitive and aim at solving
a certain problem. The more effectively they are
implemented, the more effective the organisation
as a whole is. Therefore, modelling,
improvement and optimization of business
processes is often the object of interest of
the organization. One of the aspects of process
optimization is shortening the time of their
realization. One of the most effective methods of
shortening the lead time is automation
of processes, and in particular their
computerization. Service Oriented Architecture
(SOA) is a concept of software development,
created for this purpose.

Service Oriented Architecture [4], [5], [6] is
a way of designing IT systems, which is based
on services. A service is an independent
functional unit, which gives business value and
is usually made available remotely using
computer networks. From the SOA point of
view, services are provided and called by the

components. Components are programs that can
be implemented in different technologies and on
different servers. Each component can provide
many services and can use other services.
The diversity of technologies in SOA finds
practical application, because often different
technologies are used to meet the same business
needs. In addition, companies often have
systems developed before the introduction of
SOA and produced in various technologies.
Such older systems can also be regarded
as components.

In order to implement a business process
in SOA, it is necessary to cooperate with many
components. Since they are manufactured in
various technologies, an Enterprise Service Bus
(ESB) bus is used as an intermediary. This bus
mediates communication between components
and, if necessary, adjusts the communication
protocol to the needs of the component
providing the service. In order to synchronize
the operation of individual components and
ensure the implementation of the business
process, the so-called Business Process
Management (BPM) engine is used in the SOA.
Using this element, it is possible to implement
business processes of the organization, which are

Adrian Woźniak, Tadeusz Nowicki, The problem of effective deployment architecture in SOA

 34

realized in the system, and in particular to
indicate the services, which are performed in
order to realize the business process. In the
literature, this issue was discussed mainly from
three different points of view: scheduling of
service calls, allocation of components to servers
and selection of service instance (Service
Composition).

The issue with the largest number of
publications is the choice of service instance
(called Service Composition). The problem that
Service Composition solves is that the service is
usually made available by different components
or multiple instances of the same component on
different servers and the best service instance
should be selected according to some criteria
(e.g. price, time, quality, etc.). Methods based on
genetic algorithms are most often used to solve
this problem [7], [8], [9], [10], [11]. Other
known algorithms are also used, for example:
Harmony Search in works [12], [13],
The Artificial Bee Colony Algorithm in [14],
Friut Fly Optimization Algorithm in [15],
Bat Algorithm in [16], Binary Search Tree in
[17] etc. You can also find a number of
interesting original solutions in this area: [18],
[19], [20], [21], [22]. The scheduling of service
calls was dealt with in two articles. In [23]
the method of scheduling tasks is presented, i.e.
determining the order of their completion once
they reach the queue of service calls to be
completed by the Component. The article uses
a method based on the critical path of
the process. Article [24] presents a more
sophisticated method, where global QoS
(Quality of Service) requirements are first set
from a process point of view, and then local
prioritisation of each task, depending on how far
it is from not meeting the QoS requirement.

The issue of allocating instances of
components to servers is also discussed in the
literature. In [25] is presented a method that
reduces the problem to the task of capacity
planning and presents the algorithm of its
solution. At work [26] the authors focus on
optimizing the availability of resources by
analysing the weak points in the distribution of
components for servers. Article [27] presents
a method for optimising the allocation of servers
to components using a genetic algorithm, but it
is incomplete as it does not show how to
evaluate the solution. There are also methods
that search for optimal solutions during the
operation of the system and adjust the form of
these solutions on an ongoing basis. Such
a method is set out in [28] and [29]. On the other
hand, [30] shows a method that combines the

choice of allocation and the choice of scheduling
algorithm. Proposed scheduling algorithms are
well developed there. However, part of
the allocation has been significantly simplified,
for example, optimisation is limited to the choice
of the number of homogeneous servers
for established assumptions. So far,
a comprehensive method of optimizing the
allocation of components to servers and
the selection of the scheduling algorithm in SOA
has not been presented. Therefore, the purpose
of this article is to present the model of SOA
system, and idea of optimization of such
allocation.

2. Operating model of the SOA

system

Systems in SOA can be presented from two
perspectives: organization and system, as shown
in Figure 1. The area of organization represents
the environment of the SOA system that
stimulates it. This environment is responsible for
initiating business processes in the system. In the
system area you can specify three layers (from
the lowest level): Integration, Component and
Server Layer. Integration Layer represents
the central element of SOA, which is an
intermediary in calling all services. This layer
stores information about all business processes
carried out in the system and controls when to
call which service to execute the process.
The Component Layer represents the software
that provides services. Each step in the business
process is to launch a service in the system.
The service may be provided by one or more
components, so it is important to select the best
service provider. Each component needs
resources – the server and its computing power
and memory – for its operation. An example of
the presented concepts is shown in Figure 2.
The depicted business process can be realized by
an employee or can be automated with the use of
SOA class system. The customer uses the user
interface to complete the credit application.
The application goes to the business process
engine, which is connected to the ESB and starts
the instance of the business process of handling
the application. The engine runs subsequent
services via a bus until the process is completed,
which ends with a message being sent to
the customer. In this example you can show that
one “Send email to client” service is not a copy
of the “Send contract” step, but you can still
connect them.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 33−44 (2019)

 35

Fig. 1. Areas and layers of the SOA system model (Source: own study)

Fig. 2. Example of a business process implemented in SOA (Source: own study)

This is a frequently used procedure to maintain
the universality and adaptability of services.
In this case, the “Send email to client” service is
generic and can be used in any business process
in which you need to send an email message to
the client. Different instances of the process
would transfer different parameters to the
service, such as title, content and attachments.
In monolithic systems without SOA,
optimization of their operation is focused on
criteria concerning individual systems, such as:
system response time or probability of system

suitability. Optimization of the operation of each
system individually rarely provides a solution
that is optimal globally from the point of view of
the entire business process. The advantage of
system modelling in SOA is the possibility of
unambiguous assignment of business process
steps to services provided by the system. This
makes it possible to adopt a different criterion
for system optimisation. The described
connection of processes with services enables
the adoption of optimization criteria referring to
business processes, such as: cost or time of

Adrian Woźniak, Tadeusz Nowicki, The problem of effective deployment architecture in SOA

 36

business processes execution, probability of not
executing the process in the required time, etc.
The above mentioned connection enables
the adoption of optimization criteria referring to
business processes, such as: cost or time of
business processes execution, probability of not
executing the process in the required time, etc.
With fixed hardware resources (processors,
RAM on servers), different distribution of many
components on servers will give different values
of their performance parameters, and thus
a different business value for the organization.
Algorithms for selecting a service instance will
also work better with different allocations of
components to servers. It is therefore worth
looking for the best possible allocation of
components to servers and algorithms. Since
SOA enables direct assignment of resources
(used by the service) to the business process, it is
possible to determine the optimal solution from
this point of view.

3. Mathematical model of the

problem

Further, three types of sets of numbers will be
used to describe the model:
R – a set of real positive numbers,
N – a collection of natural numbers excluding
zero,

{ }0,1=B – binary collection.

3.1. Organisational Layer Model

The organization in which the SOA system
operates is the initiator of business processes
launched in the system. So, let:

{ }1,2,3,..., ,...,= b B (1)
denote a set of process type numbers in the
organization. Each business process type can
have many instances. E.g.: the sales process
(type, class) can be executed many times in
parallel (it can have many instances).

Intervals between business process
initiations are different for instance. Due to
different sources and the nature of processes, the
distribution of a random variable defining the
intervals between process starts is different for
each process type. If the intervals between
business process start-ups are random variables,
then a sequence of these random variables is
a stream of events that iniciate business process
instance. Therefore, let

b
B

T T =   (2)

where bT mean a random variable being
the length of time between successive instances
of the b-type process. Then the function

[]() ()b B
H t H t= (3)

denote the vector of functions ()bH t being
the expected number of running instances of this
type of business process until t. In order to
launch another instance of the business process,
the previous instance does not have to be
completed. In other words, one business process
may have multiple instances at the same time.

3.2. Model of Integration Layer

The second area is the system. The first layer to
be described will be the Integration Layer. It is
the layer in which business process are realized
using BPM engine. Due to the fact that engines
control calls to services provided in the system,
they are often implemented together with
the ESB bus (e.g. SAP PO, MS BizTalk).
Inquiries starting the process may come from
different sources. For processes initiated by
employees or customers, the most common
sources are user interfaces. For processes
triggered by events (such as daily at 9:00 a.m.),
the most common source is the engine itself,
which tracks the processes and events taking
place in the system. Business processes in
the engine are most often implemented using
Business Process Modelling & Notation
(BPMN) or Business Process Execution
Language (BPEL). Most engines support both
languages. In the BPMN language, business
process tasks (subsequent steps) are
implemented by means of a task. There are
several types of tasks. A special case of a task is
the “Service task”, which represents the launch
of a service.
Let

{ }1,2,3,..., ,...,u U= (4)
mean a set of numbers of all services in
the system. Services represent steps which are
“Service Task” of business process – in this way
the BPMN notation presents a direct relation
between business processes in the organization
and the functionalities activated in the system.

Relationships within the business process
are always directional (there is a predecessor and
a successor), therefore in the graphical
representation of the process only directed
graphs will be used, which means that the only
edges will be arcs. These processes are defined
by a vector:

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 33−44 (2019)

 37

[]b B
PB PB= (5)

where
{ } { }1 2, , ,bPB G ξ ξ ψ= (6)

whereby
, ,G W U P= is a directed graph and

W – is a set of vertices of the graph, with each
vertex representing a step in the business
process (service task),

U – is a set of arcs of the graph, where each arc
means the ability to move from one vertex
(step in the process) to another,

P – a three-part relationship ()P W U P⊂ × ×
that defines the way vertices and arcs
(predecessor and successor) are linked,

1 :Wξ → – is the function that assigns
the number of the service called at the apex,

{ }2 : , , ,W FLOW OR XOR ANDξ → ,

[]: 1,0Uψ → – is the function that assigns to
the arc the probability of transition between
steps (probability of path selection).

The function 2ξ assigns the goal type to
the top of the graph. The relation referred to in
the model is a reflection of the “Sequence flow”
relation in the BPMN notation and means
moving from step to step. AND, OR and XOR
gateways are an important element of the flow.
These gateways are reflected in the model by
a parameter and probability assigned to the
relation. Depending on the type of gateway,
the next steps should be interpreted differently:
• if in the process step the gate type is set to

“FLOW”, it is a reflection of the lack of
a gate and treated as a simple transition
between steps. Then only one relation (arc)
to another step (apex) is allowed;

• If the gateway type is set to “OR” in
the process step, the system selects one or
more relations randomly according to the
probability of path selection;

• If the gateway type is set to “XOR” in
the process step, the system selects one of
the branches according to the probability of
each relation. The sum of probabilities may
not be greater than 1, but it may be less than
1 (then the difference between the sum of
probabilities and 1 is treated as the
probability of ending of the process after
the gate);

• If the gateway type is set to “AND” in
the process step, all subsequent steps should
be started.

The probability defined by the function ψ is
only relevant if the business step is followed by
an XOR or OR gateway. From the point of view
of optimization of process execution time, it is
not important what question is asked at the gate,
but the probability of choosing each of the paths.
The model presents only those steps of the
business process that are carried out in
the system. This is due to the fact that:
• the presented method does not affect

the time of the process steps carried out
outside the system;

• time of realization of off-system steps does
not influence the results of optimization
(it is important if the time of realization of
processes has been shortened, and not how
long the process lasted).

The ESB service bus is a central element of
the SOA and is an intermediary in all service
calls in the system and so it has been modeled.
Each time a service is started by
an ESB, it also generates a load on the ESB
itself. This burden is different for each of
the services. In the model we assume that there
is only one central element (BPM and ESB),
however it can be launched on several servers.
It is due to a fact that vast majority of companies
avoid implementing two or more ESB
technologies because of high cost of maintaining
it. Services are accepted and provided by
components according to Time Sharing model
rules or queue (usually FIFO). On the ESB, the
next element of the process (service call) for
processing is uploaded to the next component
queue after processing the previous element.
The model does not take into account network
traffic, but only message delay times.
The bandwidth between servers is fixed.

An element that significantly influences
the time of business processes execution is
the used algorithm of task scheduling. This
algorithm is executed on an ESB and decides:
• selection of the component and server that

is to provide the service (when many
components provide the service or when
there is a component performance
redundancy);

• sequence of tasks.
Therefore,

{ }1,2,3,..., ,...,= a A (7)
will be a set of numbers of considered
scheduling algorithms. It is not possible to verify
all algorithms. Only selected, most popular
algorithms will be analyzed. After optimization,
best algorithm is selected which is ∈WA  .

Adrian Woźniak, Tadeusz Nowicki, The problem of effective deployment architecture in SOA

 38

3.3. Component Layer Model

As shown above, business processes in SOA
class systems are defined as sequences of service
calls. The services are provided by components.
Let

{ }1,2,3,..., ,...,= k K (8)
denote the set of component numbers.
Components are independent elements of
the system, which are independent applications.
They can be run on different servers and can be
created using different technologies. Often SOA
components are legacy monolithic systems,
which have been modified so that they can share
their functionality via services. Components
perform tasks according to different algorithms,
while the most popular ones will be considered
further in their work. Therefore, let

Q Q
k K

K K =   (9)

where Q
kK ∈B – means a vector showing how

tasks are handled by the component. Two ways
of task handling are possible:
• Time Sharing (Q

kK =1) – the most common
query handling method (used for standard
services, e.g. REST);

• Queue (Q
kK =0) – a popular method of

service execution, used in particular in
asynchronous micro-services systems
(where technologies such as Rabbit MQ,
kafka are used). Usually it is implemented
as FIFO queue.

Each Component provides services, so let

,
U U

k u KxU
K K =   (10)

where , ∈
U
k uK B means the binary array element

showing the allocation of services to
components. The number 1 at the intersection of
the k-th row and the u-th column shows that
the component with the k number provides
the service number u. The same services can be
provided by several components, and each
component can be run multiple times on
different servers for reasons of performance or
reliability. Each component is assigned to
the services it provides and launch environments
in which it can operate. Regardless of whether
a component provides services or not, it needs
memory resources and computational power to
work properly on the server.
Therefore, let

K K
k K

M M =   (11)

where K
kM is the average percentage of

the standard processor running time for
the maintenance of the k-th component activity,
and

K K
k K

P P =   (12)

where K
kP ∈N is the size of the RAM needed

for correct functioning of the k-th component.
In the model it is not possible to run

the same component several times on one server.
This would require sharing server resources
between two identical components, which
eliminates the benefit of redundancy.
Components that handle tasks in Time Sharing
model already have functionality to invoke new
threads for new service invocations. And if
software architect decides to implement queue in
component it is to avoid multiple threads of
same service on the same server. Still it is
possible to run same component on multiple
servers. In the system model, only those services
that are called within the business processes are
considered.

Resources are used not only for the proper
functioning of components and execution
environments, but above all they are used to
provide services. Each service is therefore
described by the CPU and memory load it
generates both for its realization (i.e. on the
server where the component is running), but also
for its handling in the BPM and Integration
Layer. In order to be able to take into account
delays at the network level, services are also
described by the amount of data needed for
transmission in the network. Therefore, let
• U U

u U
M m =   mean the vector of the
average time needed to perform the u-th
service on a standard processor;

• U U
u U

P p =   mean the vector of average
size of memory needed to provide the u-th
service;

• U U
u U

D d =   mean the vector of average
size of data needed for the transfer in order
to launch the u-th service;

• Z Z
u U

M m =   mean the vector of average
time needed to process the query of u-th
service on ESB bus on a standard processor
(e.g.: for transformations between
communication standards);

• Z Z
u U

P p =   mean the vector of average
size of memory needed to process an u-th
service request on a bus.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 33−44 (2019)

 39

The bus is a standard SOA component, which
also takes up resources on the server. Therefore,
let:
• EM ∈R mean the average fraction of time

a standard processor takes for the ESB to
function properly,

• EP ∈N mean the average size of memory
required for the correct functioning of
the ESB.

3.4. Server Layer Model

In the Server Layer, we identify the resources
participating in the allocation at the level of
detail necessary to determine the optimal
allocation. Therefore, we identify servers with
their basic performance parameters (processor
power and memory size) and reliability.
Therefore, let

{ }1,2,3,..., ,...,= s S (13)
mean a set of server numbers, and
• S S

s S
M m =   is the vector of
computational power of the processors
expressed as the quotient of its power and
the power of a standard processor;

• S S
s S

P p =   is the vector of the size of the
server operating memory expressed in
megabytes;

• 1 ,1 S S
s S

T T =   is the vector of random
variables that represent properly working
time of the s-th server;

• 2 ,2 S S
s S

T T =   denotes the vector of random
variables that represent each subsequent
renewal time of the server.

In the Server Layer, from the point of view of
the discussed optimization, the network structure
is not important. Within scope of our interest is
only effective bandwidth between servers, so let

1 2,
s s

s s SxS
P P =   where

1 2,
s

s sP ∈R (14)
mean a matrix showing the data transfer rates
between servers. The value in row s1 and column
s2 shows the transmission throughput from
the server s1 to the server s2 expressed in
Megabits per second.
Multiple components and ESB buses can be run
on each server, so let

,
S S

k s KxS
K K =   where ,

S
k sK ∈B (15)

mean a binary matrix that shows the allocation
of components to servers. The number 1 at the
intersection of row k and column s shows that
component k is assigned to the server s. Also let

 =  
E E

s S
S S where ∈E

sS B (16)
mean a binary vector showing whether the ESB
bus is running on the server or not.

Another important element discussed in
the Server Layer is the execution environments.
Let us assume that

{ }1,2,3,..., ,...,U U Us S= (17)
is a collection of numbers of execution
environment. Launch environments in the model
represent the software running on the server
that is necessary for the proper functioning of
the component. E.g.: for a Java Spring
component, the boot environment may be e.g.
the JBoss application server and the Debian
Linux operating system. Including runtime
environments in the model is very important,
because one of the assumptions and basics of
SOA is independence from technology and
the ability to use older systems by making
their services available on the ESB. In practice,
however, systems written in different
technologies require different execution
environments. Too many execution
environments on a single server can significantly
reduce its performance. Therefore, it is one of
the important elements of optimization:
• on the one hand, we will achieve greater

efficiency of servers, if there is one runtime
environment on each server and the
components are grouped technologically;

• on the other hand, running more
components on one server reduces the time
needed to transfer data.

Let’s assume that:

U U

SU SU
s S

M m =   – is the vector quotients of
the standard processor’s operating time, which is
occupied by the sU starting environment for
proper operation;

U U

SU SU
s S

P p =   – is the vector of sizes of
the memory needed for correct operation of sU

execution environment.
Let us assume that

, ,
, ()

U UUs k s k

K K k

S xK
S S S = ∈  

B (18)

is a binary array showing that the execution
environment is able to handle the correct
operation of component. The number 1 at the
intersection of the sU row and the k column
shows that the sU execution environment is able
to handle the k component. Let us assume that

, ,
, ()

U UUs s s s

S S S

S xS
S S S = ∈  

B (19)

Adrian Woźniak, Tadeusz Nowicki, The problem of effective deployment architecture in SOA

 40

is a binary matrix that shows the allocation of
runtime environments to servers. The number 1
at the intersection of the sU row and the s column
shows that the execution environment with
the sU number is assigned to the server with
the s number. The model uses a fraction of the
standard processor power as the server load unit.
Such a unit gives the flexibility of modeling
(independence from the manufacturer and
processor type) and makes the model
independent of technological changes over time.

3.5. Data, decision variables and

 target function

To the data set belong:

1 2

, , (), , , , , , , ,
, , , , , , ,

, , , , , ,
,S , , ,

,
, ,

Q U K

K U U U Z Z E
k

U

E S S S S S

E U S SU K SS

D
P

B T H t PB K K M
P M P D M P M

M P
M

T T P
P S SK

 
 
 =  
 
  

  




 (20)

Decision variables are:

{ }, ,S EX K S WA= (21)
The task is to find such values of decision
variables that at the decision criteria are
optimally met. Decision criteria are as followes:

() ()()1 1, ,k t X E k t X= – average expected
time of the business process in the system,
weighted by the expected number of instances in
a given time t of system operation, where:

,
1

1
1

1

(,)
()(,)

()()

bLR

i bB
b i

B
b b

i
i

CR t X
H tk t X

LR tH t

=

=

=

 
 
 = ⋅
 
 
 

∑
∑

∑
 (22)

() ()()2 2, ,k t X E k t X= – the expected
variance of the time of execution of business
processes weighted by the expected number of
instances in the given time t of the system’s
operation, where:

2

,
1

,
1

2
1

1

(,)

()(,)
()()

b

b

LR

LR i b
i

i b
i b

B
b

B
b b

i
i

CR
CR t X

LR
H tk t X

LR tH t

=

=

=

=

  
  
  −  
  

  = ⋅
 
 
 
 
 
 

∑
∑

∑
∑

(23)

where:

(), ,i bCR t X – random variable denoting the
execution time of the i-th instance of the b-th
business process in time t;

()bLR t – random variable denoting the number
of instances of the b-th business process in
time t;

() ()()3 3, ,k t X E k t X= – means the expected
degree of utilization of allocated processor
resources for the implementation of services
at a given time t, where:

()()
1

3

1

(,)
(,)

S

s s
s
S

s
s

M tu t X
k t X

M Y s t

=

=

=
⋅ ⋅

∑

∑
 (24)

and

,
1

1 0
()

0 otherwise

K

k s s
k

where KS SE
Y s =

 + >= 


∑ (25)

(),stu t X – random variable denoting the time
spent on services by processors.
Only servers that have an assigned component or
bus are taken into account. So if you don’t use
any server for the system, it will increase the
value of this criterion function.

() ()()4 4, ,k t X E k t X= – means the expected
rate of utilisation of allocated memory resources
for the provision of services at time t, where:

()()
1 0

4

1

(,)
(,)

tS

s
s i

S

s
s

pu i X di
k t X

M Y s t

= =

=

=
⋅ ⋅

∑ ∫

∑
 (26)

where (),spu t X – is a random variable
denoting the size of memory occupied by
services at time t. As before, only servers that
have an assigned component or bus are taken
into account.

Based on the above criteria, the target
function can be defined:

 () () () () ()()1 2 3 4, , , , , , , ,k t X k t X k t X k t X k t X=

(27)
It is worth noting that variables

() () () (), , , , , , , ,i b b s sCR t X LR t X tu t X pu t X
cannot be determined analytically due to the
algorithmic nature of the description of business
processes and random characteristics of
the environment (system), the status of which
changes over time, and which affects the values
of these variables.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 33−44 (2019)

 41

4. The concept of SOA system
optimization

Bearing in mind the mathematical model
presented in the previous chapter, it is possible
to formulate the task of optimizing the allocation
of components to servers in the SOA and
selecting algorithms indicating the component
instance for the next service instance.
Unfortunately, it is not possible to use classic
optimization methods to find an optimal solution
for several reasons:
• due to the random nature of SOA system

operation, e.g.: business process instances
appear at different intervals, calculations
required for service provision;

• random nature of server reliability – server
operation and repair times are random
variables;

• due to the algorithmic nature of the course
of the SOA functioning – an algorithm
tracking the course of the process is
required.

Therefore, a heuristic method of finding
an optimal solution is proposed, consisting of
three complementary parts: a review algorithm,
a genetic algorithm and a simulator.

Figure 3 presents a proposed procedure
aimed at facilitating the management of the SOA
deployment architecture, in particular to ensure
optimal: allocation of servers to components,
scheduling algorithm and service selection
algorithms. Before starting the procedure, it is
necessary to collect the information described in
the model. Most of them are obtained at different
stages of the life cycle of the system regardless
of the method presented. Before implementation,
the load generated by services and components
on different hardware configurations is tested
during performance tests. After deployment,
monitoring systems often collect information
about the processing time of service calls. Less
frequently, information is obtained about
the intensity of business process launches before
they are implemented in SOA. This could
happen if there was no data in other systems,
from which one could deduce that information.
In the absence of this information, these
parameters are usually estimated using
the expert method to estimate the computing
power and memory needed for the equipment

and then adjusted if necessary. With this data
you can run an algorithm that will find the best
solution. The full overview algorithm verifies all
combinations of scheduling and service selection
algorithms. This is possible because their
number is usually small. However, it is not
possible to have a complete overview of
the allocation of components to servers due to
the incomparably higher number of possible
combinations. However, a genetic algorithm is
a perfect fit here because of the ease with which
it is possible to save the allocation of
components to servers as a genotype. Genotype
is a binary vector, which, in the case of the
presented solution, was created by transforming
the binary matrix into a vector. The binary
matrix from which the vector (genotype) was
created represents the allocation of components
to servers. Value 1 in the i-th row and j-th
column means that the i-th component has been
allocated to the j-th server, and 0 means no
allocation. Each value contained in the matrix is
called a gene. A set of genotypes in a genetic
algorithm is called a population. The first step of
a genetic algorithm is to generate an initial
population of solutions by introducing genotypes
with random values into the population.
The most difficult element is the next step –
evaluation of the solution. For this purpose,
a simulator is used, which allows you to estimate
the value of the criterion function, for each
allocation (genotype). Once the assessment has
been carried out, it will be known whether or not
a better solution has been achieved. Depending
on the end criterion chosen, this may result in
the termination of the genetic algorithm. Such
a stop condition could be for example: 1000
iterations without improving the result. If the
stop condition is not met, then selection is
carried out, which means that the solutions are
ranked according to the function of the criterion,
and the worst ones are rejected. In place of
the rejected, new ones are introduced. They are
generated by crossing genotypes of the best
solutions. The higher the place on the list of best
solutions, the greater is the chance to participate
in the generation of a child.

Adrian Woźniak, Tadeusz Nowicki, The problem of effective deployment architecture in SOA

 42

Fig. 3. Architecture management procedure (Source: own study)

In crossbreeding, two new genotypes are
always created, each of which is a copy of
a randomly selected genomes of a parent.
The last part of the genetic algorithm is
a mutation, i.e. a change in the value of
randomly selected genes in order to broaden
the range of reviewed solutions. These steps are
carried out in the loop until the stop condition
is met. The use of 4 evaluation criteria makes it
necessary to apply multi-criteria optimisation
methods. Depending on the chosen method,
the result will consist of one solution (e.g.
weighted criteria, hierarchical, mini-max
method) or multiple (pareto-optimal set) after
the algorithm is finished.

The method is complemented by the
deployment of a solution and setting the criteria
by which the genetic algorithm will be restarted.
This is necessary because the environment in
SOA is constantly changing. Both the intensity
of running individual processes may change and
the characteristics of the services themselves,
e.g.: larger customer orders may cause the
average load generated by the service instances
to increase. Usually standard monitoring tools
(e.g. Logstash in combination with
Elasticsearch) are able to obtain this information.
If a sufficiently large (in excess of pre-
determined criteria) change in the model is
detected, genetic algorithm optimisation of the
allocation should be carried out again. Such
a method allows to keep the solution close to the
optimal one in terms of the proposed criteria.

5. Conclusions

SOA enables the introduction of new criteria in
the optimization of the system deployment
architecture. This criterion is the operation of the
business process. It is possible thanks to
unambiguous mapping from a step in the
business process to a service made available by
the component, which further allows to estimate
the load to be transferred to the server. However,
the mathematical model of the problem is
complex, multi-layered, contains random
variables, and business processes are described
in an algorithmic way. For these reasons it is not
possible to prepare a deterministic algorithm to
solve the problem. The characteristics of this
model, however, allow to build a simulator and
determine the value of criteria through
simulation. Having a method of evaluation
defined in this way, it is possible to prepare an
optimization algorithm, e.g. evolutionary
algorithm and prepare a method of its solution.

6. Bibliography

[1] Dumas M., Rosa M., Mendling J.,

Reijers H., Fundamentals of Business
Process Management, Springer London,
1988.

[2] Hammer M., Champy J., Reengineering the
Corporation, HarperCollins Publishers Inc.,
1993.

[3] Gawin B., Marcinkowski B., Symulacja
Procesów Biznesowych, Helion, 2013.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 33−44 (2019)

 43

[4] Erl T., Service Oriented Architecture:
Concepts: Concepts, Technology and
Design, HarperCollins Publishers, 2005.

[5] Erl T., SOA Principles of Service Design,
Prentice Hall, 2007.

[6] Roshen W., SOA-Based enterprise
integration, Mc Graw Hill, 2009.

[7] Czarnul P., “Modelling, optimization and
execution of workflow applications with
data distribution, service selection and
budget constraints in BeesyCluster”,
Computer Science and Information
Technology (IMCSIT), 2010.

[8] Xiang C., Zhao W., Tian C., Nie J.,
Zhang J., “QoS-aware, Optimal and
Automated Service Composition with
Users’ Constraints”, IEEE 8th International
Conference, 2011.

[9] Liu Y., Wu L., Liu S., “A Novel QoS-
-Aware Service Composition Approach
Based on Path Decomposition”, Services
Computing Conference (APSCC), IEEE
Asia-Pacific, 2012.

[10] Syu Y., FanJiang Y., Kuo J., Ma S.,
“Towards a Genetic Algorithm Approach to
Automating Workflow Composition for
Web Services with Transactional and QoS-
-Awareness”, IEEE World Congress, 2011.

[11] Ludwig S., “Clonal selection based genetic
algorithm for workflow service selection”,
Evolutionary Computation (CEC), IEEE
Congress, 2012.

[12] Mohammed M., Chikh M., Fethallah H.,
“QoS-aware web service selection based on
harmony search”, ISKO-Maghreb:
Concepts and Tools for knowledge
Management, 4th International Symposium,
2014.

[13] Esfahani P., Habibi J., Varaee T.,
“Application of Social Harmony Search
Algorithm on Composite Web Service
Selection Based on Quality Attributes”,
Genetic and Evolutionary Computing
(ICGEC), Sixth International Conference,
2012.

[14] Liu Z., Xu X., “S-ABC – A Service-
-Oriented Artificial Bee Colony Algorithm
for Global Optimal Services Selection in
Concurrent Requests Environment”, Web
Services (ICWS), IEEE International
Conference, 2014.

[15] Zhang Y., Cui G., Wang Y., Guo X.,
Zhao S., “An optimization algorithm for
service composition based on an improved
FOA”, Tsinghua Science and Technology,
20(1):90–99 (2015).

[16] Hashmi K., AlJafar H., Malik Z.,
Alhosban A., “A bat algorithm based
approach of QoS optimization for long term
business pattern”, 7th International
Conference on Information and
Communication Systems (ICICS), 2016.

[17] Oh M., Baik J., Kang S., Choi H.,
“An Efficient Approach for QoS-Aware
Service Selection Based on a Tree-Based
Algorithm”, Computer and Information
Science, Seventh IEEE/ACIS International
Conference, 2008.

[18] Wang Z., Xu F., Xu X., “A Cost-Effective
Service Composition Method for Mass
Customized QoS Requirements”, IEEE
Ninth International Conference, 2012.

[19] Zhang G., Wang Z., “A QoS-Aware Service
Composition Optimization Based on
Logical Structure”, CiSE International
Conference, 2009.

[20] Pan S., Mao Q., “Semantic Web Service
Composition Planner Agent with a QoS-
-Aware Selection Model”, Web Information
Systems and Mining, 2009.

[21] Luo Y., Qi Y., Shen L., Hou, D., Sapa C.,
Chen Y., “An Improved Heuristic for
QoS-Aware Service Composition
Framework”, High Performance Computing
and Communications, 10th IEEE
International Conference, 2008.

[22] Wang C., Wang S., Chen H., Huang C.,
“A Reliability-Aware Approach for Web
Services Execution Planning”, Services,
IEEE Congress, 2007.

[23] Dyachuk D., Deters R., “Service Level
Agreement Aware Workflow Scheduling”,
Services Computing, IEEE International
Conference, 2007.

[24] Dyachuk D., Deters R., “Ensuring Service
Level Agreements for Service Workflows”,
Services Computing, IEEE International
Conference, 2008.

[25] Zhang C., Chang R., Perng C., So E., Tang
C., Tao T., “An Optimal Capacity Planning
Algorithm for Provisioning Cluster-Based
Failure-Resilient Composite Services”,
Services Computing, IEEE International
Conference, 2009.

[26] Xie L., Luo J., Qiu J., Pershing J., Li Y.,
Chen Y., “Availability weak point analysis
over an SOA deployment framework”,
Network Operations and Management
Symposium, 2008.

[27] Mennes R., Spinnewyn B., Latré S.,
Botero J., “GRECO: A Distributed Genetic
Algorithm for Reliable Application
Placement in Hybrid Clouds”, 5th IEEE

Adrian Woźniak, Tadeusz Nowicki, The problem of effective deployment architecture in SOA

 44

International Conference on Cloud
Networking, 2016.

[28] Schmid M., “An approach for autonomic
performance management in SOA
workflows”, Integrated Network
Management, IFIP/IEEE International
Symposium, 2011.

[29] Almeida J., Almeida V., Ardagna D.,
Francalanci C., Trubian M., “Resource
Management in the Autonomic Service-
Oriented Architecture”, Autonomic
Computing, IEEE International Conference,
2006.

[30] Huang K., Lu Y., Tsai M., Wu Y.,
Chang H., “Performance-Efficient Service
Deployment and Scheduling Methods for
Composite Cloud Services”, IEEE/ACM
9th International Conference on Utility and
Cloud Computing, 2016.

.

Problem wyznaczania efektywnej architektury wdrożeniowej SOA

A. WOŹNIAK, T. NOWICKI

Architektura SOA jest popularna w wielu organizacjach. Została głęboko zakorzeniona szczególnie
w dużych organizacjach, które muszą zautomatyzować procesy biznesowe i wdrożyć je w wielu systemach.
Posiada ona unikalną cechę, która pozwalającą jednoznacznie wskazać usługę w systemie, która ma realizować
krok procesu biznesowego. Wskazanie to można pokazać bezpośrednio na diagramie BPMN. W ten sposób
możliwe jest śledzenie, który serwer wykorzystał zasoby do realizacji usługi i ile tych zasobów było
potrzebnych. Zatem możliwe jest zbudowanie zadania optymalizacyjnego, które przy ograniczonych i
zawodnych zasobach określi taki przydział komponentów do serwerów oraz taki algorytm przypisywania im
zadań, aby procesy działały jak najlepiej. W artykule przedstawiono model takiego zadania optymalizacyjnego.
Składa się on z czterech warstw. Warstwa organizacyjna opisuje środowisko systemowe – typy i częstotliwość
inicjowania instancji procesów biznesowych. Warstwa silnika procesów biznesowych i ESB opisuje procesy
biznesowe i wskazuje usługi, które powinny być wykonywane na każdym kroku procesu. Warstwa
komponentów opisuje charakterystyki komponentów i przypisane do nich usługi. W warstwie serwerów opisano
zarówno właściwości serwerów, jak i środowisk uruchomieniowych niezbędnych do poprawnego działania
komponentów. Model zakończony jest sformułowaniem zadania optymalizacji i kryteriów oceny.

Słowa kluczowe: wdrożenie systemów typu SOA, model matematyczny, optymalizacja architektury systemów.

